Harmonicity of Horizontally Conformal Maps and Spectrum of the Laplacian
نویسنده
چکیده
We discuss the harmonicity of horizontally conformal maps and their relations with the spectrum of the Laplacian. We prove that if φ : M → N is a horizontally conformal map such that the tension field is divergence free, then φ is harmonic. Furthermore, if N is noncompact, then φ must be constant. Also we show that the projection of a warped product manifold onto the first component is harmonic if and only if the warping function is constant. Finally, we describe a characterization for a horizontally conformal map with a constant dilation preserving an eigenfunction.
منابع مشابه
A geometric theory of harmonic and semi-conformal maps
We describe for any Riemannian manifold M a certain scheme ML, lying in between the first and second neighbourhood of the diagonal of M . Semiconformal maps between Riemannian manifolds are then analyzed as those maps that preserve ML; harmonic maps are analyzed as those that preserve the (LeviCivita-) mirror image formation inside ML. Introduction For any Riemannian manifold M , we describe a ...
متن کاملLaplacian Energy of a Fuzzy Graph
A concept related to the spectrum of a graph is that of energy. The energy E(G) of a graph G is equal to the sum of the absolute values of the eigenvalues of the adjacency matrix of G . The Laplacian energy of a graph G is equal to the sum of distances of the Laplacian eigenvalues of G and the average degree d(G) of G. In this paper we introduce the concept of Laplacian energy of fuzzy graphs. ...
متن کاملNormalized laplacian spectrum of two new types of join graphs
Let $G$ be a graph without an isolated vertex, the normalized Laplacian matrix $tilde{mathcal{L}}(G)$ is defined as $tilde{mathcal{L}}(G)=mathcal{D}^{-frac{1}{2}}mathcal{L}(G)mathcal{D}^{-frac{1}{2}}$, where $mathcal{D}$ is a diagonal matrix whose entries are degree of vertices of $G$. The eigenvalues of $tilde{mathcal{L}}(G)$ are called as the normalized Laplacian eigenva...
متن کاملOptimum decoder for multiplicative spread spectrum image watermarking with Laplacian modeling
This paper investigates the multiplicative spread spectrum watermarking method for the image. The information bit is spreaded into middle-frequency Discrete Cosine Transform (DCT) coefficients of each block of an image using a generated pseudo-random sequence. Unlike the conventional signal modeling, we suppose that both signal and noise are distributed with Laplacian distribution, because the ...
متن کاملStability of F-biharmonic maps
This paper studies some properties of F-biharmonic maps between Riemannian manifolds. By considering the first variation formula of the F-bienergy functional, F-biharmonicity of conformal maps are investigated. Moreover, the second variation formula for F-biharmonic maps is obtained. As an application, instability and nonexistence theorems for F-biharmonic maps are given.
متن کامل